Project Structure

Idioms and suggestions from
the Go community

Colton J. McCurdy

¥ McCurdyColton
Detroit Go Meetup

November 19th, 2019

https://twitter.com/McCurdyColton

Credit Due

« GoTime.fm Ep. 102 - Application Design
« How to Structure Go Apps - Kat Zien

https://changelog.com/gotime/102
https://www.youtube.com/watch?v=oL6JBUk6tj0

Motivation

Motivation

+ Building a mental model / Readability

Motivation

+ Building a mental model / Readability
- Standardization

+ Reduce project on-boarding costs
- Logging, monitoring and alerting

Motivation

+ Building a mental model / Readability
- Standardization

+ Reduce project on-boarding costs
- Logging, monitoring and alerting

+ Helps with maintenance costs

Motivation

+ Building a mental model / Readability
- Standardization

+ Reduce project on-boarding costs
- Logging, monitoring and alerting

+ Helps with maintenance costs
- Help manage dependencies

- Specific and non-specific to Go
+ In Go, this is a compilation error
» This was actually the motivation for creating Go

Motivation

Ultimately, speed

Motivation

Ultimately, speed

Now and in the future

Consider

Context

Consider

- What problem(s) are you trying to solve?

Consider

- What problem(s) are you trying to solve?
- Will the project grow? How will it grow?

Consider

- What problem(s) are you trying to solve?
- Will the project grow? How will it grow?
- Lifetime?

« Of the problem and the project

- Product-market fit?

Consider

- What problem(s) are you trying to solve?
- Will the project grow? How will it grow?
- Lifetime?

« Of the problem and the project

- Product-market fit?
- Who are your users?

- Open-source library?
- Public API for your company?
- Internal tool or API at your company?

Consider

- What problem(s) are you trying to solve?
- Will the project grow? How will it grow?
- Lifetime?

« Of the problem and the project

- Product-market fit?
- Who are your users?

- Open-source library?
- Public API for your company?
- Internal tool or API at your company?

« How many users?
- Library for Kubernetes?

Consider

Design importance fluctuates based on the context.

Standardization

Standardization

- Context

-+ How many teams?
« How many repositories?

- single-digits? tens? thousands?

Standardization

- Context

-+ How many teams?
« How many repositories?

- single-digits? tens? thousands?
- For adoption, having a standard in place is necessary
- Define the “paved path”

Standardization

- Context

-+ How many teams?
« How many repositories?

- single-digits? tens? thousands?
- For adoption, having a standard in place is necessary
- Define the “paved path”
- Can't deviate from the standard creates barriers
- Very few people making improvements

Standardization

- Context

-+ How many teams?
« How many repositories?

- single-digits? tens? thousands?
- For adoption, having a standard in place is necessary
- Define the “paved path”
- Can't deviate from the standard creates barriers
- Very few people making improvements

Don’t let standardization prevent innovation.

Remember

Remember

- Structure / abstractions will emerge

Remember

- Structure / abstractions will emerge
- Rewrites are fine and often necessary

Remember

- Structure / abstractions will emerge
- Rewrites are fine and often necessary
- Organizations and technologies will change

- This will render your abstraction as useless
- Or will make updating technologies difficult
-« Conway’s Law
- Organizations design systems that mirror
their own communication structure

Remember

- Structure / abstractions will emerge
- Rewrites are fine and often necessary
- Organizations and technologies will change

- This will render your abstraction as useless
- Or will make updating technologies difficult
-« Conway’s Law
- Organizations design systems that mirror
their own communication structure

Solve the problem; design will emerge and often change

Go Background

pkg/

a/
a.go # package a

b/
b.go # package b

$ cat pkg/a/a.go
package a
import "b"

$ cat pkg/b/b.go
package b
import "a"

Go Background

pkg/

a/
a.go # package a

b/
b.go # package b

$ cat pkg/a/a.go
package a
import "b"

$ cat pkg/b/b.go
package b
import "a" <---- "import cycle not allowed"

Go Background

- Appreciate the “import cycle not allowed” error

| fought this error a lot when | started, but | rarely
see it now

If you're fighting this error, consider a redesign,
refactor or simplifying

Dependency management — packages are
dependencies — is important

Rob Pike comparing compilation times from C++ to Go

“...turns minutes into seconds, coffee breaks into interactive
builds” - Rob Pike at SPLASH 2012

https://talks.golang.org/2012/splash.article

Patterns

-+ No wrong “solution”, just possibly better “solutions”

Patterns

-+ No wrong “solution”, just possibly better “solutions”
- “Bad” abstractions are worse than no abstractions

Patterns

-+ No wrong “solution”, just possibly better “solutions”
- “Bad” abstractions are worse than no abstractions
+ Understand the flow of requests through packages

Patterns

-+ No wrong “solution”, just possibly better “solutions”
- “Bad” abstractions are worse than no abstractions

+ Understand the flow of requests through packages
- Part of learning is discovering what doesn’t work

Patterns

- Tests

* No tests/
« name test.go files remain in the package with the
related name.go file

* cmd/
- Multiple binaries / “entrypoints”
* internal/ VS pkg/

- internal/ - “ensures that changes to the API of
internal packages will never break an external
application”

Where do | put everything else?
« Dockerfile, README.md, dotfiles, etc.

https://blog.gopheracademy.com/advent-2016/go-and-package-focused-design/
https://blog.gopheracademy.com/advent-2016/go-and-package-focused-design/
https://blog.gopheracademy.com/advent-2016/go-and-package-focused-design/

Abstractions

What are we trying to solve with abstractions?

- Efficient mental model building
S CELE T 14Y

« Reduce maintenance costs

- Ultimately, speed

Don’t abstract just to abstract

Patterns

- This is a great starting place

Patterns

- This is a great starting place
-+ No package abstractions

Patterns

- This is a great starting place

-+ No package abstractions

- Everything is in package main
- No “import cycle” errors

Patterns

main.go

server.go

database.go

thingl.go # model, view and controller code
thingl_test.go

thing2.go # model, view and controller code
thing2_test.go

Patterns

Challenges:

Patterns

Challenges:

- Mental model construction is difficult from project
structure alone
- Ineffective display of “grouping”, layering and
request flow

Patterns

Challenges:

- Mental model construction is difficult from project
structure alone
- Ineffective display of “grouping”, layering and
request flow
- Readability

Patterns

Challenges:

- Mental model construction is difficult from project
structure alone
- Ineffective display of “grouping”, layering and
request flow
- Readability

These become more true as the project grows in size.

Patterns

Benefits:

Patterns

Benefits:
- Immediately tackling the problem(s) at hand

Patterns

Benefits:
- Immediately tackling the problem(s) at hand
- Gives abstractions time to emerge; if they exist

Patterns

Benefits:
- Immediately tackling the problem(s) at hand
- Gives abstractions time to emerge; if they exist
- Easy to identify and build abstractions from this point

Patterns

main.go
pkg/
controllers/ # package controllers
thingl.go
thing2.go
database/ # package database
database.go
models/ # package models
thingl.go
thing2.go
views/ # package views
thingl.go
thing2.go

Patterns

Challenges:

Patterns

Challenges:
- To do well, requires you to use Go interfaces
- If you are new to Go, this could be a challenge

Patterns

Challenges:
- To do well, requires you to use Go interfaces
- If you are new to Go, this could be a challenge
+ Code duplication to avoid circular dependencies

+ You will most likely have a model and response
for the same type that are tightly-coupled
- Controller calls models and builds a view

Patterns

Challenges:
- To do well, requires you to use Go interfaces
- If you are new to Go, this could be a challenge
+ Code duplication to avoid circular dependencies

+ You will most likely have a model and response
for the same type that are tightly-coupled
- Controller calls models and builds a view

- Related “things” are “far”

Patterns

Benefits:

Patterns

Benefits:
- Centralized logic for interacting with a data store

- Easier to swap technologies (e.g., PostgreSQL to
MySQL), if you have abstracted the technology
away from the model

Patterns

Benefits:
- Centralized logic for interacting with a data store

- Easier to swap technologies (e.g., PostgreSQL to
MySQL), if you have abstracted the technology
away from the model

- Standard outside of Go

Patterns

Benefits:
- Centralized logic for interacting with a data store

- Easier to swap technologies (e.g., PostgreSQL to
MySQL), if you have abstracted the technology
away from the model

- Standard outside of Go
- Related “things” are “close”

Patterns

+ Domain-driven design (DDD)
- Similar goals to micro-services
- Separating parts of the business
- Domain-specific logic (i.e., for this service, let’s
do retries)
-+ Hexagonal architecture

My Framework

- Go Package-focused design
- Ben Johnson’s blog posts
- Standard Package Layout
« Structuring Applications in Go
* github.com/golang-standards/project-layout
- Use a popular open-source example as a reference
(don’t just copy)
- Kubernetes, Docker, Yay, FZF, HashiCorp/*, etc.
* github.com/trending/go?since=weekly
« Go's stdlib - github.com/golang/go

https://blog.gopheracademy.com/advent-2016/go-and-package-focused-design/
https://medium.com/@benbjohnson/standard-package-layout-7cdbc8391fc1
https://medium.com/@benbjohnson/structuring-applications-in-go-3b04be4ff091
github.com/golang-standards/project-layout
github.com/trending/go?since=weekly
github.com/golang/go

My Framework

| failed (and still fail), a lot

Conclusion

There is no one “correct” design

	Credit Due
	Motivation
	Consider
	Standardization
	Remember
	Now Go Stuff
	Design Patterns
	General Framework in Go
	Conclusion

