
Project Structure
Idioms and suggestions from

the Go community

Colton J. McCurdy
7McCurdyColton

Detroit Go Meetup

November 19th, 2019

https://twitter.com/McCurdyColton


Credit Due

• GoTime.fm Ep. 102 - Application Design
• How to Structure Go Apps - Kat Zien

https://changelog.com/gotime/102
https://www.youtube.com/watch?v=oL6JBUk6tj0


Motivation
In general, why is project structure important?

• Building a mental model / Readability
• Standardization

• Reduce project on-boarding costs
• Logging, monitoring and alerting

• Helps with maintenance costs
• Help manage dependencies

• Speci�c and non-speci�c to Go
• In Go, this is a compilation error
• This was actually the motivation for creating Go



Motivation
In general, why is project structure important?

• Building a mental model / Readability
• Standardization

• Reduce project on-boarding costs
• Logging, monitoring and alerting

• Helps with maintenance costs
• Help manage dependencies

• Speci�c and non-speci�c to Go
• In Go, this is a compilation error
• This was actually the motivation for creating Go



Motivation
In general, why is project structure important?

• Building a mental model / Readability
• Standardization

• Reduce project on-boarding costs
• Logging, monitoring and alerting

• Helps with maintenance costs
• Help manage dependencies

• Speci�c and non-speci�c to Go
• In Go, this is a compilation error
• This was actually the motivation for creating Go



Motivation
In general, why is project structure important?

• Building a mental model / Readability
• Standardization

• Reduce project on-boarding costs
• Logging, monitoring and alerting

• Helps with maintenance costs
• Help manage dependencies

• Speci�c and non-speci�c to Go
• In Go, this is a compilation error
• This was actually the motivation for creating Go



Motivation
In general, why is project structure important?

• Building a mental model / Readability
• Standardization

• Reduce project on-boarding costs
• Logging, monitoring and alerting

• Helps with maintenance costs
• Help manage dependencies

• Speci�c and non-speci�c to Go
• In Go, this is a compilation error
• This was actually the motivation for creating Go



Motivation

Ultimately, speed

Now and in the future



Motivation

Ultimately, speed

Now and in the future



Consider
Before spending months on design, consider:

Context



Consider
Before spending months on design, consider:

• What problem(s) are you trying to solve?
• Will the project grow? How will it grow?
• Lifetime?

• Of the problem and the project
• Product-market �t?

• Who are your users?
• Open-source library?
• Public API for your company?
• Internal tool or API at your company?

• How many users?
• Library for Kubernetes?



Consider
Before spending months on design, consider:

• What problem(s) are you trying to solve?
• Will the project grow? How will it grow?
• Lifetime?

• Of the problem and the project
• Product-market �t?

• Who are your users?
• Open-source library?
• Public API for your company?
• Internal tool or API at your company?

• How many users?
• Library for Kubernetes?



Consider
Before spending months on design, consider:

• What problem(s) are you trying to solve?
• Will the project grow? How will it grow?
• Lifetime?

• Of the problem and the project
• Product-market �t?

• Who are your users?
• Open-source library?
• Public API for your company?
• Internal tool or API at your company?

• How many users?
• Library for Kubernetes?



Consider
Before spending months on design, consider:

• What problem(s) are you trying to solve?
• Will the project grow? How will it grow?
• Lifetime?

• Of the problem and the project
• Product-market �t?

• Who are your users?
• Open-source library?
• Public API for your company?
• Internal tool or API at your company?

• How many users?
• Library for Kubernetes?



Consider
Before spending months on design, consider:

• What problem(s) are you trying to solve?
• Will the project grow? How will it grow?
• Lifetime?

• Of the problem and the project
• Product-market �t?

• Who are your users?
• Open-source library?
• Public API for your company?
• Internal tool or API at your company?

• How many users?
• Library for Kubernetes?



Consider
Before spending months on design, consider:

Design importance �uctuates based on the context.



Standardization
Standardize or should leave experimentation up to teams?

• Context
• How many teams?
• How many repositories?

• single-digits? tens? thousands?
• For adoption, having a standard in place is necessary

• De�ne the “paved path”
• Can’t deviate from the standard creates barriers

• Very few people making improvements

Don’t let standardization prevent innovation.



Standardization
Standardize or should leave experimentation up to teams?

• Context
• How many teams?
• How many repositories?

• single-digits? tens? thousands?
• For adoption, having a standard in place is necessary

• De�ne the “paved path”
• Can’t deviate from the standard creates barriers

• Very few people making improvements

Don’t let standardization prevent innovation.



Standardization
Standardize or should leave experimentation up to teams?

• Context
• How many teams?
• How many repositories?

• single-digits? tens? thousands?
• For adoption, having a standard in place is necessary

• De�ne the “paved path”
• Can’t deviate from the standard creates barriers

• Very few people making improvements

Don’t let standardization prevent innovation.



Standardization
Standardize or should leave experimentation up to teams?

• Context
• How many teams?
• How many repositories?

• single-digits? tens? thousands?
• For adoption, having a standard in place is necessary

• De�ne the “paved path”
• Can’t deviate from the standard creates barriers

• Very few people making improvements

Don’t let standardization prevent innovation.



Standardization
Standardize or should leave experimentation up to teams?

• Context
• How many teams?
• How many repositories?

• single-digits? tens? thousands?
• For adoption, having a standard in place is necessary

• De�ne the “paved path”
• Can’t deviate from the standard creates barriers

• Very few people making improvements

Don’t let standardization prevent innovation.



Remember
(If you remember one slide, this should be it)

• Structure / abstractions will emerge
• Rewrites are �ne and often necessary
• Organizations and technologies will change

• This will render your abstraction as useless
• Or will make updating technologies di�cult
• Conway’s Law

• Organizations design systems that mirror
their own communication structure

Solve the problem; design will emerge and often change



Remember
(If you remember one slide, this should be it)

• Structure / abstractions will emerge
• Rewrites are �ne and often necessary
• Organizations and technologies will change

• This will render your abstraction as useless
• Or will make updating technologies di�cult
• Conway’s Law

• Organizations design systems that mirror
their own communication structure

Solve the problem; design will emerge and often change



Remember
(If you remember one slide, this should be it)

• Structure / abstractions will emerge
• Rewrites are �ne and often necessary
• Organizations and technologies will change

• This will render your abstraction as useless
• Or will make updating technologies di�cult
• Conway’s Law

• Organizations design systems that mirror
their own communication structure

Solve the problem; design will emerge and often change



Remember
(If you remember one slide, this should be it)

• Structure / abstractions will emerge
• Rewrites are �ne and often necessary
• Organizations and technologies will change

• This will render your abstraction as useless
• Or will make updating technologies di�cult
• Conway’s Law

• Organizations design systems that mirror
their own communication structure

Solve the problem; design will emerge and often change



Remember
(If you remember one slide, this should be it)

• Structure / abstractions will emerge
• Rewrites are �ne and often necessary
• Organizations and technologies will change

• This will render your abstraction as useless
• Or will make updating technologies di�cult
• Conway’s Law

• Organizations design systems that mirror
their own communication structure

Solve the problem; design will emerge and often change



Go Background
pkg/

a/

a.go # package a

b/

b.go # package b

$ cat pkg/a/a.go

package a

import "b"

$ cat pkg/b/b.go

package b

import "a"



Go Background
pkg/

a/

a.go # package a

b/

b.go # package b

$ cat pkg/a/a.go

package a

import "b"

$ cat pkg/b/b.go

package b

import "a" <---- "import cycle not allowed"



Go Background
• Appreciate the “import cycle not allowed” error
• I fought this error a lot when I started, but I rarely
see it now

• If you’re �ghting this error, consider a redesign,
refactor or simplifying

• Dependency management — packages are
dependencies — is important

Rob Pike comparing compilation times from C++ to Go

“. . . turns minutes into seconds, co�ee breaks into interactive
builds” - Rob Pike at SPLASH 2012

https://talks.golang.org/2012/splash.article


Patterns

• No wrong “solution”, just possibly better “solutions”
• “Bad” abstractions are worse than no abstractions
• Understand the �ow of requests through packages
• Part of learning is discovering what doesn’t work



Patterns

• No wrong “solution”, just possibly better “solutions”
• “Bad” abstractions are worse than no abstractions
• Understand the �ow of requests through packages
• Part of learning is discovering what doesn’t work



Patterns

• No wrong “solution”, just possibly better “solutions”
• “Bad” abstractions are worse than no abstractions
• Understand the �ow of requests through packages
• Part of learning is discovering what doesn’t work



Patterns

• No wrong “solution”, just possibly better “solutions”
• “Bad” abstractions are worse than no abstractions
• Understand the �ow of requests through packages
• Part of learning is discovering what doesn’t work



Patterns
Where do I put . . .

• Tests
• No tests/

• name test.go �les remain in the package with the
related name.go �le

• cmd/

• Multiple binaries / “entrypoints”
• internal/ vs pkg/

• internal/ - “ensures that changes to the API of
internal packages will never break an external
application”

• Where do I put everything else?
• Dockerfile, README.md, dot�les, etc.

https://blog.gopheracademy.com/advent-2016/go-and-package-focused-design/
https://blog.gopheracademy.com/advent-2016/go-and-package-focused-design/
https://blog.gopheracademy.com/advent-2016/go-and-package-focused-design/


Abstractions
What are we trying to solve with abstractions?

• E�cient mental model building
• Readability
• Reduce maintenance costs
• Ultimately, speed

Don’t abstract just to abstract



Patterns
1. Flat Structure (i.e., “abstractionless”)

• This is a great starting place
• No package abstractions
• Everything is in package main

• No “import cycle” errors



Patterns
1. Flat Structure (i.e., “abstractionless”)

• This is a great starting place
• No package abstractions
• Everything is in package main

• No “import cycle” errors



Patterns
1. Flat Structure (i.e., “abstractionless”)

• This is a great starting place
• No package abstractions
• Everything is in package main

• No “import cycle” errors



Patterns
1. Flat Structure (i.e., “abstractionless”)

main.go

server.go

database.go

thing1.go # model, view and controller code

thing1_test.go

thing2.go # model, view and controller code

thing2_test.go



Patterns
1. Flat Structure (i.e., “abstractionless”)

Challenges:
• Mental model construction is di�cult from project
structure alone
• Ine�ective display of “grouping”, layering and
request �ow

• Readability

These become more true as the project grows in size.



Patterns
1. Flat Structure (i.e., “abstractionless”)

Challenges:
• Mental model construction is di�cult from project
structure alone
• Ine�ective display of “grouping”, layering and
request �ow

• Readability

These become more true as the project grows in size.



Patterns
1. Flat Structure (i.e., “abstractionless”)

Challenges:
• Mental model construction is di�cult from project
structure alone
• Ine�ective display of “grouping”, layering and
request �ow

• Readability

These become more true as the project grows in size.



Patterns
1. Flat Structure (i.e., “abstractionless”)

Challenges:
• Mental model construction is di�cult from project
structure alone
• Ine�ective display of “grouping”, layering and
request �ow

• Readability

These become more true as the project grows in size.



Patterns
1. Flat Structure (i.e., “abstractionless”)

Bene�ts:
• Immediately tackling the problem(s) at hand
• Gives abstractions time to emerge; if they exist
• Easy to identify and build abstractions from this point



Patterns
1. Flat Structure (i.e., “abstractionless”)

Bene�ts:
• Immediately tackling the problem(s) at hand
• Gives abstractions time to emerge; if they exist
• Easy to identify and build abstractions from this point



Patterns
1. Flat Structure (i.e., “abstractionless”)

Bene�ts:
• Immediately tackling the problem(s) at hand
• Gives abstractions time to emerge; if they exist
• Easy to identify and build abstractions from this point



Patterns
1. Flat Structure (i.e., “abstractionless”)

Bene�ts:
• Immediately tackling the problem(s) at hand
• Gives abstractions time to emerge; if they exist
• Easy to identify and build abstractions from this point



Patterns
2. Model-View-Controller (MVC)

main.go

pkg/

controllers/ # package controllers

thing1.go

thing2.go

database/ # package database

database.go

models/ # package models

thing1.go

thing2.go

views/ # package views

thing1.go

thing2.go



Patterns
2. Model-View-Controller (MVC)

Challenges:
• To do well, requires you to use Go interfaces

• If you are new to Go, this could be a challenge
• Code duplication to avoid circular dependencies

• You will most likely have a model and response
for the same type that are tightly-coupled

• Controller calls models and builds a view
• Related “things” are “far”



Patterns
2. Model-View-Controller (MVC)

Challenges:
• To do well, requires you to use Go interfaces

• If you are new to Go, this could be a challenge
• Code duplication to avoid circular dependencies

• You will most likely have a model and response
for the same type that are tightly-coupled

• Controller calls models and builds a view
• Related “things” are “far”



Patterns
2. Model-View-Controller (MVC)

Challenges:
• To do well, requires you to use Go interfaces

• If you are new to Go, this could be a challenge
• Code duplication to avoid circular dependencies

• You will most likely have a model and response
for the same type that are tightly-coupled

• Controller calls models and builds a view
• Related “things” are “far”



Patterns
2. Model-View-Controller (MVC)

Challenges:
• To do well, requires you to use Go interfaces

• If you are new to Go, this could be a challenge
• Code duplication to avoid circular dependencies

• You will most likely have a model and response
for the same type that are tightly-coupled

• Controller calls models and builds a view
• Related “things” are “far”



Patterns
2. Model-View-Controller (MVC)

Bene�ts:
• Centralized logic for interacting with a data store

• Easier to swap technologies (e.g., PostgreSQL to
MySQL), if you have abstracted the technology
away from the model

• Standard outside of Go
• Related “things” are “close”



Patterns
2. Model-View-Controller (MVC)

Bene�ts:
• Centralized logic for interacting with a data store

• Easier to swap technologies (e.g., PostgreSQL to
MySQL), if you have abstracted the technology
away from the model

• Standard outside of Go
• Related “things” are “close”



Patterns
2. Model-View-Controller (MVC)

Bene�ts:
• Centralized logic for interacting with a data store

• Easier to swap technologies (e.g., PostgreSQL to
MySQL), if you have abstracted the technology
away from the model

• Standard outside of Go
• Related “things” are “close”



Patterns
2. Model-View-Controller (MVC)

Bene�ts:
• Centralized logic for interacting with a data store

• Easier to swap technologies (e.g., PostgreSQL to
MySQL), if you have abstracted the technology
away from the model

• Standard outside of Go
• Related “things” are “close”



Patterns
Addition Patterns (I’m still learning how to apply these)

• Domain-driven design (DDD)
• Similar goals to micro-services
• Separating parts of the business
• Domain-speci�c logic (i.e., for this service, let’s
do retries)

• Hexagonal architecture



My Framework
How I learned (and continue to learn)

• Go Package-focused design
• Ben Johnson’s blog posts

• Standard Package Layout
• Structuring Applications in Go

• github.com/golang-standards/project-layout

• Use a popular open-source example as a reference
(don’t just copy)
• Kubernetes, Docker, Yay, FZF, HashiCorp/*, etc.
• github.com/trending/go?since=weekly

• Go’s stdlib - github.com/golang/go

https://blog.gopheracademy.com/advent-2016/go-and-package-focused-design/
https://medium.com/@benbjohnson/standard-package-layout-7cdbc8391fc1
https://medium.com/@benbjohnson/structuring-applications-in-go-3b04be4ff091
github.com/golang-standards/project-layout
github.com/trending/go?since=weekly
github.com/golang/go


My Framework
How I learned (and continue to learn)

I failed (and still fail), a lot



Conclusion

There is no one “correct” design


	Credit Due
	Motivation
	Consider
	Standardization
	Remember
	Now Go Stuff
	Design Patterns
	General Framework in Go
	Conclusion

