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Credit Due

• GoTime.fm Ep. 102 - Application Design
• How to Structure Go Apps - Kat Zien

https://changelog.com/gotime/102
https://www.youtube.com/watch?v=oL6JBUk6tj0


Motivation
In general, why is project structure important?

• Building a mental model / Readability
• Standardization

• Reduce project on-boarding costs
• Logging, monitoring and alerting

• Helps with maintenance costs
• Help manage dependencies

• Speci�c and non-speci�c to Go
• In Go, this is a compilation error
• This was actually the motivation for creating Go
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Consider
Before spending months on design, consider:

Design importance �uctuates based on the context.



Standardization
Standardize or should leave experimentation up to teams?

• Context
• How many teams?
• How many repositories?

• single-digits? tens? thousands?
• For adoption, having a standard in place is necessary

• De�ne the “paved path”
• Can’t deviate from the standard creates barriers

• Very few people making improvements

Don’t let standardization prevent innovation.
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• Rewrites are �ne and often necessary
• Organizations and technologies will change

• This will render your abstraction as useless
• Or will make updating technologies di�cult
• Conway’s Law

• Organizations design systems that mirror
their own communication structure

Solve the problem; design will emerge and often change
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pkg/

a/

a.go # package a

b/
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Go Background
• Appreciate the “import cycle not allowed” error
• I fought this error a lot when I started, but I rarely
see it now

• If you’re �ghting this error, consider a redesign,
refactor or simplifying

• Dependency management — packages are
dependencies — is important

Rob Pike comparing compilation times from C++ to Go

“. . . turns minutes into seconds, co�ee breaks into interactive
builds” - Rob Pike at SPLASH 2012

https://talks.golang.org/2012/splash.article


Patterns

• No wrong “solution”, just possibly better “solutions”
• “Bad” abstractions are worse than no abstractions
• Understand the �ow of requests through packages
• Part of learning is discovering what doesn’t work
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Patterns
Where do I put . . .

• Tests
• No tests/

• name test.go �les remain in the package with the
related name.go �le

• cmd/

• Multiple binaries / “entrypoints”
• internal/ vs pkg/

• internal/ - “ensures that changes to the API of
internal packages will never break an external
application”

• Where do I put everything else?
• Dockerfile, README.md, dot�les, etc.

https://blog.gopheracademy.com/advent-2016/go-and-package-focused-design/
https://blog.gopheracademy.com/advent-2016/go-and-package-focused-design/
https://blog.gopheracademy.com/advent-2016/go-and-package-focused-design/


Abstractions
What are we trying to solve with abstractions?

• E�cient mental model building
• Readability
• Reduce maintenance costs
• Ultimately, speed

Don’t abstract just to abstract



Patterns
1. Flat Structure (i.e., “abstractionless”)

• This is a great starting place
• No package abstractions
• Everything is in package main

• No “import cycle” errors
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Patterns
1. Flat Structure (i.e., “abstractionless”)

main.go

server.go

database.go

thing1.go # model, view and controller code

thing1_test.go

thing2.go # model, view and controller code

thing2_test.go
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1. Flat Structure (i.e., “abstractionless”)

Challenges:
• Mental model construction is di�cult from project
structure alone
• Ine�ective display of “grouping”, layering and
request �ow

• Readability

These become more true as the project grows in size.



Patterns
1. Flat Structure (i.e., “abstractionless”)

Challenges:
• Mental model construction is di�cult from project
structure alone
• Ine�ective display of “grouping”, layering and
request �ow

• Readability

These become more true as the project grows in size.



Patterns
1. Flat Structure (i.e., “abstractionless”)

Challenges:
• Mental model construction is di�cult from project
structure alone
• Ine�ective display of “grouping”, layering and
request �ow

• Readability

These become more true as the project grows in size.



Patterns
1. Flat Structure (i.e., “abstractionless”)

Challenges:
• Mental model construction is di�cult from project
structure alone
• Ine�ective display of “grouping”, layering and
request �ow

• Readability

These become more true as the project grows in size.



Patterns
1. Flat Structure (i.e., “abstractionless”)

Bene�ts:
• Immediately tackling the problem(s) at hand
• Gives abstractions time to emerge; if they exist
• Easy to identify and build abstractions from this point



Patterns
1. Flat Structure (i.e., “abstractionless”)

Bene�ts:
• Immediately tackling the problem(s) at hand
• Gives abstractions time to emerge; if they exist
• Easy to identify and build abstractions from this point



Patterns
1. Flat Structure (i.e., “abstractionless”)

Bene�ts:
• Immediately tackling the problem(s) at hand
• Gives abstractions time to emerge; if they exist
• Easy to identify and build abstractions from this point



Patterns
1. Flat Structure (i.e., “abstractionless”)

Bene�ts:
• Immediately tackling the problem(s) at hand
• Gives abstractions time to emerge; if they exist
• Easy to identify and build abstractions from this point



Patterns
2. Model-View-Controller (MVC)

main.go

pkg/

controllers/ # package controllers

thing1.go

thing2.go

database/ # package database

database.go

models/ # package models

thing1.go

thing2.go

views/ # package views

thing1.go

thing2.go



Patterns
2. Model-View-Controller (MVC)

Challenges:
• To do well, requires you to use Go interfaces

• If you are new to Go, this could be a challenge
• Code duplication to avoid circular dependencies

• You will most likely have a model and response
for the same type that are tightly-coupled

• Controller calls models and builds a view
• Related “things” are “far”
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• Easier to swap technologies (e.g., PostgreSQL to
MySQL), if you have abstracted the technology
away from the model

• Standard outside of Go
• Related “things” are “close”
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Patterns
Addition Patterns (I’m still learning how to apply these)

• Domain-driven design (DDD)
• Similar goals to micro-services
• Separating parts of the business
• Domain-speci�c logic (i.e., for this service, let’s
do retries)

• Hexagonal architecture



My Framework
How I learned (and continue to learn)

• Go Package-focused design
• Ben Johnson’s blog posts

• Standard Package Layout
• Structuring Applications in Go

• github.com/golang-standards/project-layout

• Use a popular open-source example as a reference
(don’t just copy)
• Kubernetes, Docker, Yay, FZF, HashiCorp/*, etc.
• github.com/trending/go?since=weekly

• Go’s stdlib - github.com/golang/go

https://blog.gopheracademy.com/advent-2016/go-and-package-focused-design/
https://medium.com/@benbjohnson/standard-package-layout-7cdbc8391fc1
https://medium.com/@benbjohnson/structuring-applications-in-go-3b04be4ff091
github.com/golang-standards/project-layout
github.com/trending/go?since=weekly
github.com/golang/go


My Framework
How I learned (and continue to learn)

I failed (and still fail), a lot



Conclusion

There is no one “correct” design
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